Pages

Subscribe:

Ads 468x60px

Friday, September 23, 2011

Simulating Turbulent Combustion Speeds Design

Oak Ridge National Laboratory
Sept 23, 2011
High-fidelity large eddy simulation (LES) of direct-injection processes in internal-combustion engines provides an essential component for development of high-efficiency, low-emissions vehicles. Here LES reveals how fuel from a state-of-the-art injector mixes with air inside an engine cylinder. Image credit: Joseph Oefelein and Daniel Strong, Sandia National Laboratories.

Air and fuel mix violently during turbulent combustion. The ferocious mixing needed to ignite fuel and sustain its burning is governed by the same fluid dynamics equations that depict smoke swirling lazily from a chimney. Large swirls spin off smaller swirls and so on. The multiple scales of swirls pose a challenge to the supercomputers that solve those equations to simulate turbulent combustion. Researchers rely on these simulations to develop clean-energy technologies for power and propulsion.

A team led by mechanical engineers Joseph Oefelein and Jacqueline Chen of Sandia National Laboratories (Sandia) simulates turbulent combustion at different scales. A burning flame can manifest chemical properties on small scales from billionths of a meter up to thousandths of a meter, whereas the motion of an engine valve can exert effects at large scales from hundredths of a meter down to millionths of a meter. This multiscale complexity is common across all combustion applications—internal combustion engines, rockets, turbines for airplanes and power plants, and industrial boilers and furnaces.

Chen and Oefelein were allocated 113 million hours on Oak Ridge Leadership Computing Facility's Jaguar supercomputer in 2008, 2009, and 2010 to simulate autoignition and injection processes with alternative fuels. For 2011 they received 60 million processor hours for high-fidelity simulations of combustion in advanced engines. Their team uses simulations to develop predictive models validated against benchmark experiments. These models are then used in engineering-grade simulations, which run on desktops and clusters to optimize designs of combustion devices using diverse fuels. Because industrial researchers must conduct thousands of calculations around a single parameter to optimize a part design, calculations need to be inexpensive.
To read more click here...

No comments:

Post a Comment