Pages

Subscribe:

Ads 468x60px

Tuesday, January 31, 2012

Device Could Drive Down Solar's Cost

Technology Review
Jan 31, 2012
 
Power play: Inverters mounted to the bottom of each panel provide grid-ready power at a test site in Sunnyvale, California. Credit: ArrayPower

As solar panel manufacturers try to harvest more of the sun's energy for less, they face increasingly diminishing returns. At roughly $1 per watt, the cost of solar modules now represents less than a third of the total cost of commercial solar installations. To cut the total cost of solar power—currently $3.00 to $3.50 per watt—bigger gains will have to come from improvements in the power electronics, wiring, and mounting systems required for solar installations.

ArrayPower, a startup based in Sunnyvale, California, has developed a new type of solar inverter—the device that converts direct current (DC) power produced by solar panels to grid-ready, alternating current (AC) electricity—that it claims could significantly reduce the cost of solar power. The company says its "sequenced inverter" will reduce the cost of commercial solar by 35 cents per watt, or more than 10 percent, by lowering capital costs, simplifying installation, and increasing output.

Large-scale solar installations currently use either a single "central" inverter or a number of "string" inverters to convert power from groups of panels strung together in series. Both approaches, however, suffer from low efficiencies because of the way the panels are connected. In either scenario, if one panel is damaged or shaded from the sun, the system's entire output is diminished to the level of its lowest-producing panel.

ArrayPower seeks to maximize power output through a new type of inverter mounted to each panel. The device is similar to microinverters now used in residential solar installations. By converting DC to AC power at each module, microinverters maximize the power output of each module, thereby increasing system output by roughly 3 percent to 10 percent.

Microinverters are typically more expensive because they require sophisticated electronics to filter and smooth the alternating current coming out of each inverter. A major cost is an electrolytic capacitor, essentially a chemical battery that stores energy for short bursts, allowing the inverter to send out pulses of electricity that create an alternating current. Further, microinverters typically only yield single-phase AC electricity, an electric current that is suited for residential use but not commercial or utility use.
To read more click here...

No comments:

Post a Comment