University of Illinois
Nov 9, 2011
InGaAs: Solar cells (bottom) made with arrays of nanowires. Engineers can tune the performance by using nanowires of differing composition and thickness (top). | Graphic by Xiuling Li
Tiny wires could help engineers realize high-performance solar cells and other electronics, according to University of Illinois researchers.
The research group, led by electrical and computer engineering professor Xiuling Li, developed a technique to integrate compound semiconductor nanowires on silicon wafers, overcoming key challenges in device production. The team published its results in the journal Nano Letters.
Semiconductors in the III-V (pronounced three-five) group are promising for devices that change light to electricity and vice-versa, such as high-end solar cells or lasers. However, they don’t integrate with silicon seamlessly, which is a problem since silicon is the most ubiquitous device platform. Each material has a specific distance between the atoms in the crystal, known as the lattice constant.
“The biggest challenge has been that III-V semiconductors and silicon do not have the same lattice constants,” Li said. “They cannot be stacked on top of each other in a straightforward way without generating dislocations, which can be thought of as atomic scale cracks.”
When the crystal lattices don’t line up, there is a mismatch between the materials. Researchers usually deposit III-V materials on top of silicon wafers in a thin film that covers the wafer, but the mismatch causes strain and introduces defects, degrading the device performance.
Instead of a thin film, the Illinois team grew a densely packed array of nanowires, tiny strands of III-V semiconductor that grow up vertically from the silicon wafer.
“The nanowire geometry offers a lot more freedom from lattice-matching restrictions by dissipating the mismatch strain energy laterally through the sidewalls,” Li said.
To read more click here...
Wednesday, November 9, 2011
Nanowires could be solution for high performance solar cells
Labels:
Education,
Green Energy,
Materials,
Nanotechnology
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment